Abstract

The off-state drain current leakage characteristics of 130 nm CMOS technology are investigated using x-ray irradiation and operating temperature as variables. Radiation-induced interface traps in the gate oxide to gate-drain overlap region strongly enhance the off-state leakage as a function of gate bias. Due to the thin gate oxide in these 130 nm devices, we find that drain-edge direct tunneling is more plausible than conventional gate-induced-drain-leakage in explaining the observed increase in drain leakage. Radiation-induced traps in the shallow trench isolation oxide create parasitic channels in the p-well and produce another source of off-state drain leakage with increasing total dose. The drain current increase from both the gate overlap region and the shallow trench edge are enhanced with increasing total dose and suppressed by cooling

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.