Abstract

Both the ferrous and ferric forms of wild-type neuroglobin are found to be hexacoordinated with axial ligation of the F8-His and E7-His. Rapidly growing Escherichia coli cell cultures with low O 2 concentration generate nitric oxide (NO). Combined electron paramagnetic resonance (EPR) and optical measurements show that wild-type human recombinant neuroglobin, overexpressed in such E. coli cells, still favors the F8His-Fe 2+-E7His conformation, whereby only a small fraction of the protein binds NO. Upon mutation of the E7-His to Leu and Gln, the competition with the distal histidine disappears and the nitrosyl ferrous form is readily observed. At low temperature, the EPR spectra of the NO-ligated Ngb proteins consist of contributions from two geometrically different NO-heme conformations. In combination with EPR data of vertebrate hemoglobins and myoglobins, the temperature dependence of the EPR spectra of the NO adducts of ferrous hNgb and its E7-mutants proves a strong stabilization of one isomer by the E7-histidine in wt hNgb. It is shown that this is not related to the polarity of histidine, but to its specific binding characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.