Abstract

Rhodospirillum rubrum grown either chemotrophically or phototrophically at 14°C and 30°C, was employed to study the effect of temperature on fatty acid composition as well as on several membrane bound functions involved in energy metabolism. Upon growth at both temperatures the fatty acid composition of membranes showed differences, which could be attributed to an incomplete formation of photosynthetically active membranes rather than specifically to the growth temperature. Activities of NADH dependent respiration and light induced proton extrusion by cells did not show discontinuities in Arrhenius plots down to temperatures of 15°C and 5°C, respectively. In contrast, coupling factor Mg2+- and Ca2+-ATPase as well as succinate cytochrome c oxidoreductase showed significant breaks at 20°C and 18°C, respectively. Similarly, in Rhodopseudomonas sphaeroides. NADH dependent respiration and light induced proton extrusion by cells was continuous over the entire range of temperatures applied. ATPase as well as succinate cytochrome c oxidoreductase, on the other hand, featured discontinuities in Arrhenius plots at 20°C and 19°C. The implication of the data on growth rates and membrane structure are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call