Abstract
We provide a macroscopic theory and experimental results for magnetic resonances of antiferromagnetically-coupled ferrimagnets. Our theory, which interpolates the dynamics of antiferromagnets and ferromagnets smoothly, can describe ferrimagnetic resonances across the angular momentum compensation point. We also present experimental results for spin-torque induced ferrimagnetic resonance at several temperatures. The spectral analysis based on our theory reveals that the Gilbert damping parameter, which has been considered to be strongly temperature dependent, is insensitive to temperature. We envision that our work will facilitate further investigation of ferrimagnetic dynamics by providing a theoretical framework suitable for a broad range of temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.