Abstract
Experimental data are presented for the strength and lifetime under constant stress of single Kevlar 49 aramid filaments at two elevated temperatures, 80 and 130° C. As seen in previously published work performed at room temperature (21 °C), the strength data could be fitted to a two-parameter Weibull distribution; increasing the temperature caused a decrease in the Weibull scale parameter while the shape parameter remained relatively constant, indicating a decrease in the mean strength but no change in strength variability. Lifetime experiments at both 80 and 130°C were performed at different filament stress levels, ranging from 55 to 92.5% of the Weibull scale parameter for short-term strength at that temperature. These data were fitted to a two-parameter Weibull distribution with large variability (scale parameter values ⩽ 1), and evaluated using an exponential kinetic breakdown model in the spirit of Eyring and Zhurkov. Using this model, activation energies in the neighbourhood of 80 kcal mol−1 (3.35 × 105 J mol−1 ) were obtained, suggesting that scission of the C-N bond plays the dominant role in fibre failure at longer times under constant stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.