Abstract

The temperature dependence of continued single-walled carbon nanotube (SWNT) growth on an iron cluster is investigated using quantum chemical molecular dynamics simulations based on the density functional tight-binding method. As a model system for continued SWNT growth, a (5,5) armchair-type SWNT seed attached to an iron Fe38 cluster was used. Continuous and rapid supply of C atoms was provided in the vicinity of the nanotube-metal interface area. The simulations were performed at temperatures of 1000, 1500, and 2000 K. The simulations reveal fastest growth at 1500 K, although the differences are moderate. In the observed growth process, formation of polyyne chains at the rim of the nanotube-metal interface efficiently initiates pentagon/hexagon/heptagon ring formations in the carbon sidewall, leading to “lift-off” of the nanotube from the metal cluster. At 1000 K, the SWNT lift-off is suppressed despite the fact that the total number of created rings in the nanotube is comparable to that at 1500 K. In addition, relatively long polyyne chains tend to form extensions from the carbon sidewall to the metal cluster at 1000 K, whereas at 2000 K, deformation of the nanotube becomes more pronounced and diameter narrowing sets in, and polyyne chains at the rim of the nanotube easily dissociate at this high temperature. These physical and chemical events at 1000 and 2000 K can be considered inhibiting factors preventing efficient growth of the nanotube.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.