Abstract
High-quality ZnS, ZnSe, and ZnTe epitaxial films were grown on (001)-GaAs-substrates by molecular beam epitaxy. The 1s-exciton peak energy positions have been determined by absorption measurements from 2 K up to about room temperature. For ZnS and ZnSe additional high-temperature 1s-exciton energy data were obtained by reflectance measurements performed from 300 up to about 550 K. These complete E1s(T) data sets are fitted using a recently developed analytical model. The high-temperature slopes of the individual E1s(T) curves and the effective phonon temperatures of ZnS, ZnSe, and ZnTe are found to scale almost linearly with the corresponding zero-temperature energy gaps and the Debye temperatures, respectively. Various ad hoc formulas of Varshni type, which have been invoked in recent articles for numerical simulations of restricted E1s(T) data sets for cubic ZnS, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.