Abstract

In this work we investigate the influence of extractor design and temperature on transport properties of quantum cascade detector. For this purpose we realize numerical calculation of electron lifetimes considering electron–phonon and electron impurities scattering. Electron–phonon interactions are treated using Fermi Golden Rule which allows to calculate lifetime of carriers with temperature and structure design taking into account. Transport characteristics of the quantum cascade detectors have been computed using density matrix theory. As a result, we have obtained the system of ordinary differential equations describing dynamics of electron distribution functions and intersubband correlations. Managing carrier lifetime in quantum wells gives us possibility to make device response faster. Also carrier lifetime is the relevant characteristic, allows us to calculate a lot of parameters such as quantum efficiency and photocurrent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.