Abstract
Abstract Temperature dependence of electroluminescence degradation was investigated in two types of organic light emitting devices (OLEDs) based on tris(8-hydroxyquinoline) aluminum (AlQ3) emitter molecule, one without and another with copper phthalocyanine (CuPc) buffer layer at the hole-injecting contact interface. Electroluminescence degradation in time was measured for devices operated at 22 and 70 °C. Results unexpectedly showed that devices without the CuPc buffer layer demonstrated negligible change in half-life when operated at 22 or 70 °C, while devices with the CuPc layer showed the expected decrease in half-life when the temperature was increased. The results are explained within the framework of recently proposed OLED degradation mechanism, which identifies AlQ3 cations as unstable, leading to device degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.