Abstract

The effect of climate warming on community composition is expected to be contingent on competitive outcomes, yet approaches to projecting ecological outcomes often rely on measures of density-independent performance across temperatures. Recent theory suggests that the temperature response of competitive ability differs in shape from that of population growth rate. Here, we test this hypothesis empirically and find thermal performance curves of competitive ability in aquatic microorganisms to be systematically left-shifted and flatter compared to those of exponential growth rate. The minimum resource requirement for growth, R*-an inverse indicator of competitive ability-changes with temperature following a U-shaped pattern in all four species tested, contrasting from their left-skewed density-independent growth rate thermal performance curves. Our results provide new evidence that exploitative competitive success is highest at temperatures that are sub-optimal for growth, suggesting performance estimates of density-independent variables might underpredict performance in cooler competitive environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call