Abstract

Compared with conventional edge-emitting semiconductor lasers, vertical-cavity surface-emitting lasers (VCSELs) exhibit many advantages such as low power consumption, low threshold current, single longitudinal-mode operation, circular output beam with narrow divergence, on-wafer testing capability, high bandwidth modulation, low cost and easy large-scale integration into two-dimensional arrays, etc. VCSELs have been widely adopted in various applications such as optical communication, optical storage, parallel optical links, etc. At the same time, the rich dynamic characteristics of VCSELs have always been one of the frontier topics in the field of laser research, and many theoretically and experimentally investigated results have been reported. For theoretically investigating the dynamical characteristics of VCSELs, the spin-flip model (SFM) is one of most commonly and effectively used methods. In order to accurately predict the nonlinear dynamical performance of a 1550 nm-VCSEL, six characteristic parameters included in the rate equations of the SFM need to be given accurately. The six characteristic parameters are the decay rate of field k, the decay rate of total carrier population N, the linear anisotropies representing dichroism a, the linear anisotropies representing birefringence p, the spin-flip rate s, and the linewidth enhancement factor . In this work, through experimentally analyzing the output performances of a 1550 nm-VCSEL under free-running and parallel polarized optical injection, such six characteristic parameters included in the SFM are extracted first in the case that the temperature of the VCSEL is set to be 20.00℃. Furthermore, through gradually increasing the temperature of the 1550 nm-VCSEL from 10.00℃ to 30.00℃, the dependence of the six characteristic parameters on the temperature of the 1550 nm-VCSEL is investigated emphatically. The results show that with the increase of temperature of the 1550 nm-VCSEL, the linear anisotropy representing birefringence p behaves as an increasing trend, and the linewidth enhancement factor shows a decreasing trend. However, the other four characteristic parameters present complex varying trends with the increase of the temperature of the 1550 nm-VCSEL. The research in this paper is helpful in accurately understanding and controlling the dynamical characteristics of the VCSEL, and we hope that it can give a guidance for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call