Abstract

Human ileal bile acid-binding protein (I-BABP), a member of the family of intracellular lipid binding proteins plays a key role in the cellular trafficking and metabolic regulation of bile salts. The protein has two internal and, according to a recent study, an additional superficial binding site and binds di- and trihydroxy bile salts with positive cooperativity and a high degree of site-selectivity. Previously, in the apo form, we have identified an extensive network of conformational fluctuations on the millisecond time scale, which cease upon ligation. Additionally, ligand binding at room temperature was found to be accompanied by a slight rigidification of picosecond-nanosecond (ps-ns) backbone flexibility. In the current study, temperature-dependent (15)N NMR spin relaxation measurements were used to gain more insight into the role of dynamics in human I-BABP-bile salt recognition. According to our analysis, residues sensing a conformational exchange in the apo state can be grouped into two clusters with slightly different exchange rates. The entropy-enthalpy compensation observed for both clusters suggests a disorder-order transition between a ground and a sparsely populated higher energy state in the absence of ligands. Analysis of the faster, ps-ns motion of (15)N-(1)H bond vectors indicates an unusual nonlinear temperature-dependence for both ligation states. Intriguingly, while bile salt binding results in a more uniform response to temperature change throughout the protein, the temperature derivative of the generalized order parameter shows different responses to temperature increase for the two forms of the protein in the investigated temperature range. Analysis of both slow and fast motions in human I-BABP indicates largely different energy landscapes for the apo and holo states suggesting that optimization of binding interactions might be achieved by altering the dynamic behavior of specific segments in the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.