Abstract

The temperature dependence of the one-bond 13C 1H coupling constant of the methyl groups in pivalic acid, tert-butyl chloride and hexamethylethane has been studied in the liquid and plastic crystalline phases. A steady decrease in the coupling constant with falling temperature in the plastic crystalline phase has been observed for these organic solids. A maximum change in the 13C 1H coupling constant of 25 Hz has been found after deduction of the effect of overlap of the broadened lines in the methyl quartet. The CNDO/2 calculations indicate that the temperature dependence of the coupling constant is not caused by intramolecular transitions. The significant reduction of the 13C 1H coupling constant is largely attributed to intramolecular dipole-dipole interactions due to a slight anisotropic tumbling of the molecules in the plastic phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.