Abstract

Theoretical and experimental investigations of temperature deformations in a thin-walled singleunit quadrupole electrode system are described. A mathematical model describing similar deformations is presented. It is shown that heating leads to the deformation and symmetrical shift of all four electrodes. In this case, the electrodes retain their shapes, only the radius of the field changes. Furthermore, the thickness of the electrode system does not affect the shift value over the entire temperature range studied. This makes possible the selection of electrode thickness based only on the required mechanical strength and weight of the electrode system. An experiment is described, demonstrating the effect of high temperatures on the shape of a mass peak. The results show that the quality of the electric field formed by the electrodes is not degraded upon heating up to 200°C. Therefore, the proposed design of the electrode system retains the hyperbolic profile of the electrodes under heating, and this enables a mass spectrometer to operate at temperatures up to 200°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.