Abstract

AbstractA protocol proposed is described here to characterize for the conversion from mesophilic to thermophilic conditions in a pilot‐scale anaerobic digester that operates with municipal mixed sludge. Furthermore, the performance of thermophilic operation relative to the previous mesophilic operating status was evaluated. The performance was evaluated in terms of a number of parameters that included organic removal rate (ORR) (kgVS/m3·d and kgCOD/m3·d), biogas and volumetric methane production rate (m3/m3·d), pH, total acidity (mg acetic acid/L) and acidity/alkalinity relationship. The digester was initially operated with an organic loading rate (OLR) of 1.26 kgVS/m3·d and a solids retention time (SRT) of 27 days under mesophilic conditions (35°C). The solids destruction efficiency was found to be 54.3%, while the volumetric biogas production in the digester reached 0.36 m3/m3·d. The strategy selected for the conversion from mesophilic to thermophilic digestion involved slowly increasing the temperature of the digester (0.38° C/d) until it reached 43°C. In this way, the temperature of the digester was raised from 43 to 45°C and then operated at a constant 45°C. The performance parameters at this temperature indicated that the digester was unstable. For this reason the OLR was decreased until feeding was suppressed. The reactor operated at 45°C for 32 days, and the temperature of the digester was then raised from 45 to 50°C (without feeding). The temperature was subsequently raised to 50 – 52°C with the system operating at variable SRT (65‐52 days), and finally, the temperature was increased at a rate of 0.13°C/d until it reached 55°C. At thermophilic conditions (55°C), the OLR studied was 1.48 kgVS/m3·d (SRT: 27 days), and under these conditions the solids destruction efficiency was 53.3% VS, and the biogas produced in the digester reached 0.32 m3/m3·d. © 2005 American Institute of Chemical Engineers AIChE J, 2005

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.