Abstract

Abstract. Lateral carbon flux through river networks is an important and poorly understood component of the global carbon budget. This work investigates how temperature and hydrology control the production and export of dissolved organic carbon (DOC) in the Susquehanna Shale Hills Critical Zone Observatory in Pennsylvania, USA. Using field measurements of daily stream discharge, evapotranspiration, and stream DOC concentration, we calibrated the catchment-scale biogeochemical reactive transport model BioRT-Flux-PIHM (Biogeochemical Reactive Transport–Flux–Penn State Integrated Hydrologic Model, BFP), which met the satisfactory standard of a Nash–Sutcliffe efficiency (NSE) value greater than 0.5. We used the calibrated model to estimate and compare the daily DOC production rates (Rp; the sum of the local DOC production rates in individual grid cells) and export rate (Re; the product of the concentration and discharge at the stream outlet, or load). Results showed that daily Rp varied by less than an order of magnitude, primarily depending on seasonal temperature. In contrast, daily Re varied by more than 3 orders of magnitude and was strongly associated with variation in discharge and hydrological connectivity. In summer, high temperature and evapotranspiration dried and disconnected hillslopes from the stream, driving Rp to its maximum but Re to its minimum. During this period, the stream only exported DOC from the organic-poor groundwater and from organic-rich soil water in the swales bordering the stream. The DOC produced accumulated in hillslopes and was later flushed out during the wet and cold period (winter and spring) when Re peaked as the stream reconnected with uphill and Rp reached its minimum. The model reproduced the observed concentration–discharge (C–Q) relationship characterized by an unusual flushing–dilution pattern with maximum concentrations at intermediate discharge, indicating three end-members of source waters. A sensitivity analysis indicated that this nonlinearity was caused by shifts in the relative contribution of different source waters to the stream under different flow conditions. At low discharge, stream water reflected the chemistry of organic-poor groundwater; at intermediate discharge, stream water was dominated by the organic-rich soil water from swales; at high discharge, the stream reflected uphill soil water with an intermediate DOC concentration. This pattern persisted regardless of the DOC production rate as long as the contribution of deeper groundwater flow remained low (<18 % of the streamflow). When groundwater flow increased above 18 %, comparable amounts of groundwater and swale soil water mixed in the stream and masked the high DOC concentration from swales. In that case, the C–Q patterns switched to a flushing-only pattern with increasing DOC concentration at high discharge. These results depict a conceptual model that the catchment serves as a producer and storage reservoir for DOC under hot and dry conditions and transitions into a DOC exporter under wet and cold conditions. This study also illustrates how different controls on DOC production and export – temperature and hydrological flow paths, respectively – can create temporal asynchrony at the catchment scale. Future warming and increasing hydrological extremes could accentuate this asynchrony, with DOC production occurring primarily during dry periods and lateral export of DOC dominating in major storm events.

Highlights

  • Soil organic carbon (SOC) is the largest terrestrial stock of organic carbon, containing approximately 4 times more carbon than the atmosphere (Stockmann et al, 2013; Hugelius et al, 2014)

  • Stream water reflected the chemistry of organic-poor groundwater; at intermediate discharge, stream water was dominated by the organic-rich soil water from swales; at high discharge, the stream reflected uphill soil water with an intermediate dissolved organic carbon (DOC) concentration

  • When groundwater flow increased above 18 %, comparable amounts of groundwater and swale soil water mixed in the stream and masked the high DOC concentration from swales

Read more

Summary

Introduction

Soil organic carbon (SOC) is the largest terrestrial stock of organic carbon, containing approximately 4 times more carbon than the atmosphere (Stockmann et al, 2013; Hugelius et al, 2014). Understanding the SOC balance requires the consideration of lateral fluxes in water, including dissolved organic and inorganic carbon (DOC and DIC, respectively), and vertical fluxes of gases such as CO2 and CH4 (Chapin et al, 2006). Both lateral and vertical fluxes influence SOC mineralization to the atmosphere (Campeau et al, 2019), lateral fluxes are arguably less understood and integrated into Earth system models (Aufdenkampe et al, 2011; Raymond et al, 2016). DOC regulates food web structures by acting as an energy source for heterotrophic organisms and interacts with other biogeochemical cycles (Malone et al, 2018; Abbott et al, 2016)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.