Abstract

Coral skeletons preserve useful archival indicators from which to reconstruct past environments. We conducted temperature-controlled culture experiments (20, 22, 27, and 31°C) with primary polyps of Acropora digitifera to accurately assess the impact of a wide range of temperatures on the calcification rate and to methodically evaluate the skeletal trace elements (Sr/Ca, Mg/Ca, and Na/Ca ratios). Water temperatures positively affected the calcification rate up to 31°C, which exceeds the temperature threshold for this species. The calcification rates also varied widely (>20%) during each of the four temperature treatments. The skeletal Sr/Ca ratio was most strongly correlated with water temperature (R2=0.68, p<0.001), whereas the Mg/Ca and Na/Ca ratios showed lower correlations (R2=0.53, p<0.001; R2=0.34, p=0.011, respectively). The variations in the skeletal Sr/Ca, Mg/Ca, and Na/Ca ratios at the four different temperatures were 0.36%–1.20%, 0.83%–3.76%, and 0.52%–3.24%, respectively. Thus, the Sr/Ca ratio showed the least variation, despite the wide variations in the calcification rate. We confirm that the Sr/Ca ratio of A. digitifera juveniles is a robust proxy of temperature, regardless of variations in the calcification rate and the wide range of ambient temperatures. In addition, our results regarding skeletal Mg/Ca and Na/Ca ratios further our understanding of coral calcification processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.