Abstract

BK7 glass has an unusual temperature-dependent refractive index and thickness, which provides a promising platform for uncovering the temperature-related optical phenomena and applications. Here, we theoretically demonstrate that monolayer graphene based BK7 glass grating structure has two Goos–Hänchen (GH) peaks with respective magnitudes of and and their corresponding reflectances are also high. The electromagnetic field distribution in this structure directly reveals that the enhanced GH shifts can be ascribed to the excitation of the guide mode resonances in the waveguide dielectric layer below BK7 glass grating structure and their high reflectances are granted by the constructive interferences between the reflected waves. In addition, the magnitudes of the GH peaks can be controlled by the temperature of BK7 glass as well as the chemical potential of monolayer graphene. We also evaluate the temperature sensing property of this structure based on the GH shifts and find that its maximum temperature sensitivity can be up to The enhanced and controlled GH shift presented in monolayer graphene based BK7 glass grating structure shows promise for the applications, such as, optical sensors, temperature sensors, and optoelectronic detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.