Abstract
Temperature control of a rapid thermal processing (RTP) system using a proposed self-constructing adaptive fuzzy inference network (SCAFIN) is presented in this paper. First, the physical modeling of a RTP system is done. An integrated model is given for the components that make up a RTP system. These components are the lamp power dynamics, ray-tracing model, and the wafer thermal dynamic model. The models for the components are integrated in a numerical code to give a computer simulation of the complete RTP system. The simulation can be used to investigate the interaction of the furnace, lamp contour, and the control system. Then a direct inverse control scheme using the proposed SCAFIN is adopted to control the temperature of the RTP system. The SCAFIN is inherently a modified TSK-type fuzzy rule-based model possessing neural network's learning ability. There are no rules initially in the SCAFIN. They are created and adapted as on-line learning proceeds via simultaneous structure and parameter identification. Simulation results show that the control approach is able to track a temporally varying temperature trajectory and maintain the uniformity of the spatial temperature distribution of the wafer in the RTP system simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.