Abstract
AbstractThe thermal variant of the classical nucleation‐growth‐separation principle is shown, both theoretically and experimentally, to be a reliable tool for studying protein crystal nucleation. The classical nucleation theory is used to elucidate the temperature dependence of crystal nucleus size. A one‐to‐one ratio of the number density of nuclei formed to crystals grown to visible size is achieved using the nucleation‐growth‐separation method. The experiments conducted in such a way show that new nuclei are prevented from appearing while avoiding any crystal loss due to dissolution. The same method is used to study experimentally the interval of growth temperatures where the number density of (nucleated) crystals is relatively insensitive to the growth temperature. It is argued that this temperature interval corresponds to the width of the so‐called metastable zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.