Abstract

Abstract The performance of linear and nonlinear temperature control schemes is assessed for an open-loop unstable gas-phase polyethylene reactor (GPPER), based on speed, damping, robustness and the ability to maintain closed-loop stability in different operating regimes. An existing industrial GPPER model is improved by modelling the temperature states in the external heat exchanger using linear and nonlinear driving force models with varying numbers of heat transfer stages. Differences in heat exchanger models do not produce gain mismatch but do result in phase mismatch. It is shown that the nonlinear error trajectory controller (ETC) exhibits significantly superior responses in terms of speed, damping and robustness compared with an optimally-tuned PID controller. Therefore, substantial benefits could be realized using nonlinear controllers because they can provide good disturbance rejection capabilities and ensure closed-loop stability over a wide range of operating conditions. An approach is presented for tuning ETCs for minimum-phase processes of arbitrary relative degree.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.