Abstract

The stabilization of fluid catalytic cracking reactors is tackled in this paper. A robust PID control law is developed in order to control the outlet reactor temperature. The suggested control is based on a reduced order model of the reactor given by a system of ordinary differential equations. The controller is synthesized using an input/output linearizing control law coupled to a proportional-derivative reduced order observer to infer on-line the unknown heat of reaction. The proposed control algorithm leads to a classical PID structure. New tuning rules are given, based on the system structure, estimations and closed-loop time constants. This control strategy turns out to be robust against model uncertainties, noisy temperature measurements and set point changes. The performance of the reaction temperature in a tubular riser reactor is numerically compared when the proposed control scheme and standard PID controllers are applied. # 2002 Elsevier Science Ltd. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.