Abstract

The Chlamydomonas reinhardtii (Dangeard) temperature-conditional mutant 68-11AR is phenotypically indistinguishable from the wild type at the permissive temperature (25°C), but has greatly reduced photosynthetic ability and requires acetate for growth at the restrictive temperature (35°C). The mutant strain is deficient in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) holoenzyme when grown at 35°C. This decrease in the level of enzyme appears to be due to degradation of assembled holoenzyme rather than to a reduction in the synthesis of enzyme subunits. When grown at 25°C, the mutant has a substantial amount of Rubisco. Enzyme purified from 25°C-grown mutant cells was found to have a 16% decrease in the CO2/O2 specificity factor when compared to the wild-type enzyme. This alteration was accompanied by changes in the kinetic constants for both carboxylation and oxygenation. Although the Rubisco active site is located on the chloroplast-encoded large subunit, genetic analysis showed that the 68-11AR strain arose from a nucleargene mutation. The two nuclear genes that encode the Rubisco small subunits (rbcS1 and rbcS2) were cloned from mutant 68-11AR and completely sequenced, but no mutation was found. Analysis of restriction-fragment length polymorphisms also failed to detect linkage between mutant and rbcS gene loci. These results indicate that nuclear genes can influence Rubisco catalysis without necessarily encoding polypeptides that reside within the holoenzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.