Abstract

We aimed to improve the detection accuracy of laser methane sensors in expansive temperature application environments. In this paper, a large-scale dataset of the measured concentration of the sensor at different temperatures is established, and a temperature compensation model based on the ISSA-BP neural network is proposed. On the data side, a large-scale dataset of 15,810 sets of laser methane sensors with different temperatures and concentrations was established, and an Improved Isolation Forest algorithm was used to clean the large-scale data and remove the outliers in the dataset. On the modeling framework, a temperature compensation model based on the ISSA-BP neural network is proposed. The quasi-reflective learning, chameleon swarm algorithm, Lévy flight, and artificial rabbits optimization are utilized to improve the initialization of the sparrow population, explorer position, anti-predator position, and position of individual sparrows in each generation, respectively, to improve the global optimization seeking ability of the standard sparrow search algorithm. The ISSA-BP temperature compensation model far outperforms the four models, SVM, RF, BP, and PSO-BP, in model evaluation metrics such as MAE, MAPE, RMSE, and R-square for both the training and test sets. The results show that the algorithm in this paper can significantly improve the detection accuracy of the laser methane sensor under the wide temperature application environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call