Abstract
We demonstrate a technique of temperature compensation for 1.3μm InAs/GaAs quantum-dot (QD) lasers by facet coating design. The key point of the technique is to make sure that the mirror loss of the lasers decreases as the temperature rises. To realize this, we design a type of facet coating by shifting the central wavelength of the facet coating from 1310nm to 1480nm, whose reflectivity increases as the emission wavelength of the lasers red-shifts. Consequently, the laser with the new facet coating exhibits a characteristic temperature doubled in size and a more stable slope efficiency in the temperature range from 10°C to 70°C, compared with the traditional one with a temperature-independent mirror loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.