Abstract
Temperature is an important factor influencing the results of non-destructive acoustoelastic measurements of the internal stress in objects like bolts owing to its impact on the elastic modulus of the material. However, conventional methods that seek to obtain the temperature field of the measurement object independently suffer from high complexity and low accuracy. The present work addresses this issue by developing a method that eliminates the influence of temperature on the acoustoelastic measurements of stress in bolts based on the time interval between the head and coda waves of ultrasonic signals. The origin of coda waves in rod-shaped objects is investigated theoretically, and this understanding is applied for analyzing the relationship between the temperature and internal stress of the object and the time interval between the head and coda waves of ultrasonic signals. The analysis demonstrates that the observed time interval is related to temperature and stress in accordance with a linear relationship with the velocity of the longitudinal wave and the rod diameter. Finally, the obtained relationship is applied within an acoustoelastic measurement model to eliminate the influence of temperature from the measurement results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.