Abstract

Temperature-insensitive characteristics are of great importance in implementing the actual applications of vertical-cavity surface-emitting lasers (VCSEL's) because of the temperature change in the surroundings. To extend the operational temperature range of such lasers, we fabricated a VCSEL with a broad gain bandwidth. The active layers in VCSEL's consist of multiple quantum wells (MQW's) with different bandgap energies. From the change in the threshold current, with temperature as a parameter, we found that the operational temperature range of a VCSEL with a broad gain bandwidth is more than 20/spl deg/C wider than that of conventional VCSEL's, whose active layers consist of a single type of MQW. We demonstrate that the extended-gain bandwidth gives better temperature characteristics. In addition, we simulated the structure of the active layers, and the optimized structure resulted in a 1-mW light output power at less than 5 mA in a single transverse mode oscillation from 20-70/spl deg/C.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.