Abstract

Current voltage (I-V) characteristic of illuminated photovoltaic (PV) cell varies with temperature changes. The effect is explained according to the solid state theory. The higher the temperature, the lower the open-circuit voltage and the higher the short-circuit current. This behaviour is explained on the basis of band theory of the solid state physics. The increasing temperature causes a narrowing of the forbidden gap and a shift of the Fermi energy level toward the centre of the forbidden gap. Both these effects lead to a reduction of the potential barrier in the band diagram of the illuminated PN junction, and thus to a decrease of the photovoltaic voltage. In addition, narrowing of the forbidden gap causes higher generation of electron-hole pairs in the illuminated PN junction and short-circuit current increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.