Abstract

The air gap of tubular linear motors moves linearly, causing heat transfer states of the motor to alternate repeatedly. Thus, the heat transfer coefficients of the mover inner surface and the stator outer surface vary constantly. In this paper, the combination model of the thermal circuit and temperature field is established to calculate the transient temperature rise of a tubular linear motor with short and movable primary. The equivalent thermal circuit model of the moving air gap and the temperature field models of the primary (also named as mover) and secondary (also named as stator) are established. The thermal boundary conditions and the correlations among them are analyzed. By this method, the complicated variation and distribution of the heat transfer coefficients are gained. Moreover, the transient temperature rise of the motor is calculated. This method takes advantage of the flexibility of the thermal circuit method and the accuracy of the temperature field method. The calculated and tested results of the prototype are compared and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.