Abstract

Temperature affects various metabolic and physiological processes in ectothermic animals, including auditory systems. The current study investigates the effect of temperature and thermal acclimation time on hearing sensitivities in a eurythermal and a stenothermal fish possessing accessory hearing structures. Using the auditory evoked potential (AEP) recording technique, we determined thresholds from 0.1 to 4 kHz and peak latencies of AEP-waveforms in response to a click stimulus. The goldfish Carassius auratus was chosen as a model for eurythermal and the Amazonian catfish Megalodoras uranoscopus as a model for stenothermal species. Both species were tested at two different temperatures (C. auratus: 15 °C and 25 °C, M. uranoscopus: 22 °C and 30 °C) and acclimation periods, within 22 h (unacclimated) or three to four weeks (acclimated) after reaching the target temperature. A frequency-dependent increase in auditory sensitivity and a decrease of peak latencies was recorded in both species at higher temperatures, independent of acclimation time. The change in hearing thresholds per degree Celsius was more pronounced in the stenothermal catfish. The data indicate that higher temperatures improved hearing (lower thresholds, shorter latencies), whereas acclimation had no effect on hearing in either species. The latter data contradict previous findings in the eurythermal channel catfish Ictalurus punctatus in which acclimation slightly improved hearing when raising the temperatures. A comparison of changes in hearing sensitivity per degree Celsius of all seven species tested so far revealed no differences between eurythermal and stenothermal species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call