Abstract

Introducing the group of Loitskanskii [1] form-parameters and transformations of Saljnikov [2], the set of governing equations of the in compressible laminar temperature boundary layer was transformed in the universal form, with Prandtl number as parameter, for the case of the constant wall temperature. Using the universal results for air (Pr=0.72) the procedure for calculation of the Nusselt number (dimensionless heat transfer coefficient) on the particular contour (airfoil NACA 0010-34) was developed. The dimensionless temperature profiles within the boundary layer were presented also. The parameter of rotation ?0, as well as Eckert number, was varied, and their influences on the heat transfer from the surface to the working fluid were presented and analyzed. .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.