Abstract

This study presents a temperature-based control strategy for the stabilization of an anaerobic reactor during organic overloads. To prove feasibility of the proposed approach the rate of methane production was followed in batch activity tests and reactor runs during mesophilic-thermophilic transitions. Within the first 0.25-6 h of temperature augmentation, an increase in the rate of methane production was observed with higher rates measured under thermophilic (above 40 degrees C) conditions. However, 24 h after startup both in batch tests and reactor runs, the rate of methane production under thermophilic conditions was inferior to that under optimal mesophilic conditions (35 degrees C). Following these results, a control strategy based on short-term augmentation of the reactor temperature was proposed and tested in a 10 L UASB reactor. The control strategy employed a multi-model observer-based estimator to stabilize the effluent COD concentration during organic overloads. The temperature-based control resulted in an increased methanization rate and improved reactor stability overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.