Abstract

Lactococcus petauri is an important emergent aquaculture pathogen in the USA. To better understand environmental conditions conducive to piscine lactococcosis and the susceptibility of fish species, laboratory-controlled challenges were used as models of infection. Rainbow trout Oncorhynchus mykiss maintained at 13 or 18°C were challenged by intracoelomic (ICe) injection with 101, 103 or 105 colony-forming units per fish (CFU fish-1) and monitored for 21 d. At 13°C, trout experienced mortalities of 7, 7 and 0%, and bacterial persistence of 0, 20 and 0% in survivors, respectively. When exposed to the same bacterial doses, trout maintained at 18°C experienced mortalities of 59, 84 and 91%, and bacterial persistence of 60, 66 and 0% in survivors, confirming a significant role of temperature in the pathogenesis of lactococcosis. Additionally, the susceptibility of rainbow trout, Chinook salmon Oncorhynchus tshawytscha, white sturgeon Acipenser transmontanus, Nile tilapia Oreochromis niloticus, and koi Cyprinus carpio to infection by L. petauri was compared using ICe challenges at 18°C. Trout and salmon experienced 96 and 56% cumulative mortality, respectively, and 17% of surviving salmon remained persistently infected. There were no mortalities in the other fish species, and no culturable bacteria recovered at the end of the challenge. However, when surviving fish were used in further cohabitation trials, naïve trout housed with previously exposed tilapia exhibited 6% mortality, demonstrating that non-salmonids can become sub-clinical carriers of this pathogen. The data obtained provide useful information regarding temperature-associated virulence, fish species susceptibility, and potential carrier transmission of L. petauri that can be used in the development of better management practices to protect against piscine lactococcosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.