Abstract

Due to its super thermal stability, inorganic CsPbI2Br perovskite has attracted more and more attention in the field of photovoltaic application. However, its device performance, as reported to date, is greatly challenged in preparing CsPbI2Br films with both sufficient absorbance and high quality. Herein, crystallization engineering is applied in producing solution-processed CsPbI2Br film to guarantee sufficient light harvesting and effective carrier extraction. Further study proves that the precursor solution temperature would largely affect the crystallization progress: (1) the nucleation step is highly related to the solubility of precursor in a specific solvent or solvents at elevated temperatures; (2) the crystal growth rate is highly related to the solvent evaporation rate. To obtain thick film with larger crystalline grain size, the precursor solution temperature should be carefully adjusted for both suppressing the formation of too many nuclei and increasing the crystallization rate at the same time. Finally, the optimized CsPbI2Br would be obtained when the precursor solution is maintained at 100 °C, the corresponding device shows a stabilized efficiency as high as 14.81%. As far as we know, this is the highest PCE for the CsPbBrI2 perovskite based solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.