Abstract

Constructed wetlands are widely used for wastewater treatment, but there is little information on processes affecting their performance in cold climates, effects of plants on seasonal performance, or plant selection for cold regions. We evaluated the effects of three plant species on seasonal removal of dissolved organic matter (OM) (measured by chemical oxygen demand and dissolved organic carbon) and root zone oxidation status (measured by redox potential [Eh] and sulfate [SO4(2-)]) in subsurface-flow wetland (SSW) microcosms. A series of 20-d incubations of simulated wastewater was conducted during a 28-mo greenhouse study at temperatures from 4 to 24 degrees C. Presence and species of plants strongly affected seasonal differences in OM removal and root zone oxidation. All plants enhanced OM removal compared with unplanted controls, but plant effects and differences among species were much greater at 4 degrees C, during dormancy, than at 24 degrees C, during the growing season. Low temperatures were associated with decreased OM removal in unplanted controls and broadleaf cattail (Typha latifolia L.) microcosms and with increased removal in beaked sedge (Carex rostrata Stokes) and hardstem bulrush [Schoenoplectus acutus (Muhl. ex Bigelow) A. & D. Löve var. acutus] microcosms. Differences in OM removal corresponded to species' apparent abilities to increase root zone oxygen supply. Sedge and bulrush significantly raised Eh values and SO4(2-) concentrations, particularly at 4 degrees C. These results add to evidence that SSWs can be effective in cold climates and suggest that plant species selection may be especially important to optimizing SSW performance in cold climates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.