Abstract

In this paper, we discuss temperature and velocity measurements inside a thin fluid layer using background-oriented schlieren (BOS) and particle image velocimetry (PIV) methods. BOS is a suitable technique for quantitative temperature measurements, but so far it has been used in fully transparent systems only. Introducing a reflective surface inside the measurement geometry which is optically accessible from only one viewing direction, we measure the refractive index change of a flow provided by two elliptical jets by visualizing displacements on a background target. Relation between the refractive index change and the temperature gradients is used to compute 2D temperature fields. Measurements are carried out for various temperature differences between the jets for both steady and dynamic flow. The simultaneous implementation of BOS and PIV techniques provides instantaneous, two-dimensional temperature gradients and velocity vectors inside the thin fluid layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call