Abstract

We investigate the variation in fracture strength of graphene with temperature, strain rate, and crack length using molecular dynamics (MD) simulations, kinetic analysis of fracture with a nonlinear elastic relation, and the quantized fracture mechanics theory. Young’s modulus does not vary significantly with temperature until about 1200 K, beyond which the material becomes softer. Temperature plays a more important role in determining the fracture strength of graphene. Our studies suggest that graphene can be a strong material even, when subjected to variations in temperature, strain rate, and cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.