Abstract

Surface acoustic wave (SAW) devices are solid-state components in which a wave propagates along the surface of a piezoelectric material. Changes in strain or temperature cause shifts in the acoustic wave speed and/or the path length, enabling SAW devices to act as sensors. We present experimental studies on lithium niobate SAW devices acting as passively-powered devices. Sensitivity, reproducibility, and linearity are excellent when measuring strain at constant temperature, but the devices are also sensitive to temperature changes. We show experimental results of strain measurement incorporating temperature compensation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call