Abstract

In this study, we report a theoretical model for the temperature and size dependent surface energy of metallic nanomaterials. The model is verified by making a comparison with the available simulation and experimental data. Reasonable agreement has been observed between these results. This study reveals that the decrease of surface energy at high temperatures is caused by cohesive energy weakening and bond expansion. With the same nanomaterial size, the sequence of size effects on the surface energy from weak to strong is thin films, nanowires, and nanoparticles. In particular, this work can provide a theoretical basis for the prediction of size dependent surface energy of metallic nanomaterials at different temperatures, which can help in the understanding of the mechanical and thermodynamic properties of metal surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.