Abstract

The structural transition of the l- and dl forms of poly(N-(1- hydroxymethyl)propylmethacrylamide (PHMPMA) in aqueous solution was studied by measuring the pressure dependence of the apparent scattering intensity, differential scanning calorimetry (DSC), and circular dichroism (CD). The thermodynamic implications of the results are discussed in relation to the chiral structure of the side chain, and differences in the thermal and barometric transitions. T-P diagrams of the transition showed characteristic ellipsoid features. Antagonism of the temperature and pressure effects was observed only for P(dl-HMPMA). For P(l-HMPMA), the transition temperature (Ttr) decreased with increasing pressure, and the highest Ttr was observed at atmospheric pressure (0.1 MPa). For both polymers, the highest Ptrs were observed at the lowest temperatures. The l polymer showed a specific negative peak in its CD spectrum at around 220 nm in the lower temperature region and the temperature dependence was reproduced by a single-step transition, with the midpoint corresponding to the Ttr obtained from the scattering measurements. Coupled with the results from the DSC, the different behavior between the P(l-HMPMA) and P(dl-HMPMA) could be explained in terms of the chain states before and after the transition. The cooperative factors derived from the DSC measurement revealed that about 4 to 5 polymers of the present size were necessary to perform a thermal transition for P(l-HMPMA), and that P(dl-HMPMA) underwent its transition as an almost single molecular event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.