Abstract
Pulse-echo-overlap measurements of ultrasonic wave velocity have been used to determine the elastic stiffness moduli and related elastic properties of ceramic boron carbide (B4C) as functions of temperature in the range 160–295 K and hydrostatic pressure up to 0.2 GPa at room temperature. B4C is an elastically stiff but extremely light ceramic: at 295 K, the longitudinal stiffness (CL), shear stiffness (μ), adiabatic bulk modulus (B S ), Young's modulus (E) and Poisson's ratio (σ) are 498 GPa, 193 GPa, 241 GPa, 457 GPa and 0.184, respectively. In general, the adiabatic bulk modulus B S agrees well with both experimental and theoretical values determined previously and is approximately constant over the measured temperature range. Both E and μ increase with decreasing temperature and do not show any unusual effects. The values determined at 295 K for the hydrostatic-pressure derivatives (∂ CL/∂P)P=O, (∂μ/∂P)P=O and (∂B S /∂P)P=O are 5.7 ± 0.3, 0.78 ± 0.4 and 4.67 ± 0.3, respectively. The hydrostatic-pressure derivative (∂B S /∂P)P=O of the bulk modulus is found to be comparable with that estimated previously from dynamic yield strength measurements. The effects of hydrostatic pressure on the ultrasonic wave velocity have been used to determine the hydrostatic-pressure derivatives of elastic stiffnesses and the acoustic-mode Gru neisen parameters. The longitudinal (γL), shear (γS), and mean (γel) acoustic-mode Gruneisen parameters of B4C are positive: the zone-centre acoustic phonons stiffen under pressure in the usual way. Knowledge of the elastic and nonlinear acoustic properties sheds light on the thermal properties of ceramic B4C. Since the acoustic Debye temperature ΘD (=1480 K) is very high, the shear modes provide a substantial contribution to the acoustic phonon population at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Materials Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.