Abstract

We present the first measurement of temperature and polarization angular power spectra of the diffuse emission of Galactic dust at 353 GHz as seen by Archeops on 20% of the sky. The temperature angular power spectrum is compatible with that provided by the extrapolation to 353 GHz of IRAS and DIRBE maps using \cite{fds} model number 8. For Galactic latitudes $|b| \geq 5$ deg we report a 4 sigma detection of large scale ($3\leq \ell \leq 8$) temperature-polarization cross-correlation $(\ell+1)C_\ell^{TE}/2\pi = 76\pm 21 \mu\rm{K_{RJ}}^2$ and set upper limits to the $E$ and $B$ modes at $11 \mu\rm{K_{RJ}}^2$. For Galactic latitudes $|b| \geq 10$ deg, on the same angular scales, we report a 2 sigma detection of temperature-polarization cross-correlation $(\ell+1)C_\ell^{TE}/2\pi = 24\pm 13 \mu\rm{K_{RJ}}^2$. These results are then extrapolated to 100 GHz to estimate the contamination in CMB measurements by polarized diffuse Galactic dust emission. The $TE$ signal is then $1.7\pm0.5$ and $0.5\pm0.3 \mu\rm{K^2_{CMB}}$ for $|b| \geq 5$ and 10 deg. respectively. The upper limit on $E$ and $B$ becomes $0.2 \mu\rm{K^2_{CMB}} (2\sigma)$. If polarized dust emission at higher Galactic latitude cuts is similar to the one we report here, then dust polarized radiation will be a major foreground for determining the polarization power spectra of the CMB at high frequencies above 100 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.