Abstract
We present studies on the modifications in temperature, number density and phase-space density when a laser cooled atom cloud from the optical molasses is trapped in a quadrupole magnetic trap. Theoretically it is shown that for a given temperature and size of the cloud from the molasses, the phase-space density in the magnetic trap first increases with magnetic field gradient and then decreases with it, after attaining a maximum value at an optimum value of magnetic field gradient. The experimentally measured variation in phase-space density in the magnetic trap with the magnetic field gradient has shown the similar trend. However, the experimentally measured values of number density and phase-space density are much lower than their theoretically predicted values. This is attributed to the higher experimentally observed temperature in the magnetic trap than the theoretically predicted temperature. Nevertheless, these studies can be useful to set a higher phase-space density in the trap by setting the optimum value of field gradient of the quadrupole magnetic trap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.