Abstract

Linker histones (H1) are the basic proteins in higher eukaryotes that are responsible for the final condensation of chromatin. In contrast to the nucleosome core histone proteins, the role of H1 in compacting DNA is not clearly understood. In this study ITC was used to measure the binding constant, enthalpy change, and binding site size for the interactions of H10, or its C-terminal (H10-C) and globular (H10-G) domains to highly polymerized calf-thymus DNA at temperatures from 288K to 308K. Heat capacity changes, ΔCp, for these same H10 binding interactions were estimated from the temperature dependence of the enthalpy changes. The enthalpy changes for binding H10, H10-C, or H10-G to CT-DNA are all endothermic at 298K, becoming more exothermic as the temperature is increased. The ΔH for binding H10-G to CT-DNA is exothermic at temperatures above approximately 300K. Osmotic stress experiments indicate that the binding of H10 is accompanied by the release of approximately 35 water molecules.We estimate from our naked DNA titration results that the binding of the H10 to the nucleosome places the H10 protein in close contact with approximately 41 DNA bp. The breakdown is that the H10 carboxyl terminus interacts with 28bp of linker DNA on one side of the nucleosome, the H10 globular domain binds directly to 7bp of core DNA, and shields another 6 linker DNA bases, 3bp on either side of the nucleosome where the linker DNA exits the nucleosome core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.