Abstract

Macroinvertebrates play a vital role in coastal ecosystems and are an important indicator of ecosystem quality. Both anthropogenic activity and environmental changes may lead to significant changes in the marine macroinvertebrate community. However, the assembly process of benthic biodiversity and its mechanism driven by environmental factors at large scales remains unclear. Here, using the benthic field survey data of 15 years at large spatial and temporal scales from the Yellow Sea Large Marine Ecosystem, we investigated the relative importance of environmental selection, dispersal processes, random-deterministic processes of macroinvertebrates community diversity assembly, and the responses of this relative importance driven by temperature and nutrients. Results showed that the macroinvertebrates community diversity is mainly affected by dispersal. Nitrogen and phosphorus are the most important negative factors among environmental variables, while geographical distance is the main limiting factor of β diversity. Within the range of 0.35-0.70 mg/L of nutrients, increasing nutrient concentration can significantly facilitate the contribution of the decay effect to β diversity. Within the temperature range studied (15.0-18.0°C), both warming and cooling can lead to a greater tendency for species diversity assembly processes to be dominated by deterministic processes. The analysis contributes to a better understanding of the assembly process of the diversity of coastal marine macroinvertebrates communities and how they adapt to global biogeochemical processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call