Abstract
The influences of temperature and irradiance on vegetative growth of two species of Leucocoryne (Leucocoryne coquimbensis F. Phil and L. ixioides (Hook.) Lindl.) were examined in controlled environment growth rooms. The growing environments had day/night temperatures of 10/5, 15/10, or 20/15 °C, providing mean temperatures of 7.5, 12.5, or 17.5 °C, and photosynthetic photon fluxes (PPF) of 497 or 710 μmol·m-2·s-1. Leaf emergence data were recorded up to three times a week, and measurements of vegetative growth were made in the rooms twice weekly. Destructive harvests were carried out at intervals up to four weeks apart. Leaves of L. ixioides emerged first in all mean temperatures. As mean temperature decreased from 17.5 to 7.5 °C, the differences in first emergence dates became more apparent between species. Appearance of the second leaf of both species occurred in less than half the number of days the first leaf took to emerge. The time taken for further leaves to develop increased as temperature decreased, particularly for L. ixioides and at mean temperatures below 12.5 °C. Although leaves of L. ixioides emerged first, days to emergence of further leaves increased to lag behind production of L. coquimbensis leaves, particularly when mean temperatures dropped below 12.5 °C. Temperature also significantly affected growth of other plant parts. As mean temperature increased, maximum leaf, root and main bulb dry weights increased for both species, along with secondary bulb dry weights of L. coquimbensis. As irradiance increased, maximum leaf dry weights decreased and maximum bulb dry weights increased of both species, and maximum dropper dry weights of L. coquimbensis increased. Leucocoryne coquimbensis appears to have the greatest capacity to multiply vegetatively and this is enhanced by high mean temperatures. These results suggest that mean temperatures higher than those used in this study are required for sustained leaf emergence, particularly for L. ixioides although this species has the capacity to emerge at low temperatures. High mean temperatures are also likely to promote vegetative mass of all plant parts of both species, whereas higher irradiance levels than used in this study would enhance main bulb growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Horticultural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.