Abstract

With hydrogen-like impurity (HLI) located in the center of CsI quantum pseudodot (QPD) and by using the variational method of Pekar type (VMPT), we investigate the first-excited state energy (FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory (QST). According to the present work’s numerical results, the FESE, excitation energy and transition frequency decay (amplify) with raising temperature in the regime of lower (higher) temperature. They are decreasing functions of Coulomb impurity potential strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.