Abstract

Critical temperatures for delayed hydride cracking (DHC) initiation during cooling (TRIT) and crack arrest during heating (TDAT) have been measured in experiments on specimens from a Zircaloy-2 electron beam weld irradiated to a fluence of 3 to 5 > 1025 n ∙ m-2 (E > 1 MeV) and then hydrided to concentrations of 35 and 55 ppm. The experimental observations are shown to be consistent with a simple model based on previously determined hydrogen terminal solid solubility data for dissolution and precipitation, which describes conditions for sustained hydride precipitation at the crack tip. When plotted against bulk hydrogen concentration in solution, both TRIT and TDAT fall below the dissolution solvus temperature and above the precipitation solvus temperature. A key assumption in the model is that, while the local crack tip stress concentration causes local enhancement of the hydrogen concentration in solution, the hydride precipitation solvus is unaffected by stress. The good agreement obtained between measured and predicted critical temperatures provides strong support for this assumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.