Abstract

Temperature and H2O2 dual-responsive nanoparticles were fabricated from ferrocene modified mesoporous silica (MSN-Fc) and β-cyclodextrin-poly(N-isopropylacrylamide) (β-CD-PNIPAM) star-shaped polymer due to the host–guest interactions for controlled drug release. The formation and structure of β-CD-PNIPAM@MSN-Fc composite nanoparticles was confirmed by FTIR, TGA, TEM and N2 adsorption-desorption isotherms. The size of nanoparticles was about 100−150 nm with well-ordered mesoporous structure and PNIPAM chains coating on the surface as outer shell. The channels of MSNs and hydrophobic cavities of β-CD were all contributed to the high drug loading capacity for nanoparticles. The release of DOX from nanoparticles was enhanced with the increase of temperature above LCST or adding H2O2 in ambient O2. The release kinetics were studied using different models to explain drug release mechanism. Furthermore, the drug loaded composite nanoparticles exhibited excellent anti-cancer activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.