Abstract

We investigate temperature-dependent photogenerated carrier diffusion in single-crystal methylammonium lead iodide microstuctures via scanning photocurrent microscopy. Carrier diffusion lengths increased abruptly across the tetragonal to orthorhombic phase transition and reached 200 ± 50 μm at 80 K. In combination with the microsecond carrier lifetime measured by a transient photocurrent method, an enormous carrier mobility value of 3 × 104 cm2/V s was extracted at 80 K. The observed highly nonlocal photocurrent and the rapid increase of the carrier diffusion length at low temperatures can be understood by the formation and efficient transport of free excitons in the orthorhombic phase as a result of reduced optical phonon scattering due to the dipolar nature of the excitons. Carrier diffusion lengths were tuned by a factor of 8 by gate voltage and increased with increasing majority carrier (electron) concentration, consistent with the exciton model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.